EQUAÇÃO GERAL DE GRACELI.

 G ψ = E ψ =  E [G+].... ..  =

G ψ = E ψ =  E [G+ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   ψ μ / h/c ψ(xt)  [x  t ]..


SISTEMA GRACELI DE:

 TENSOR G+ GRACELI = SDCTIE GRACELI, DENSIDADE DE CARGA E DISTRIBUIÇÃO ELETRÔNICA, NÍVEIS DE ENERGIA, NÚMERO E ESTADO QUÂNTICO. + POTENCIAL DE SALTO QUÂNTICO RELATIVO AOS ELEMENTOS QUÍMICO COM O SEU RESPECTIVO  E ESPECÍFICO NÍVEL DE ENERGIA., POTENCIAL DE ENERGIA, POTENCIAL QUÍMICO,  SISTEMA GRACELI DO INFINITO DIMENSIONAL.


ONDE A CONFIGURAÇÃO ELETRÔNICA TAMBÉM PASSA A SER DIMENSÕES FÍSICO-QUÍMICA DE GRACELI.



Na matemática, a equação de Hamilton–Jacobi (HJE em inglês) é uma condição necessária para descrever a geometria em problemas de cálculos. Na física, ela é uma reformulação da mecânica clássica e é equivalente a outras reformulações como a segunda lei de Newtonmecânica de Lagrange e mecânica hamiltoniana. Ela foi formulada pelos matemáticos William Rowan Hamilton e Carl Gustav Jakob Jacobi.

A equação de Hamilton–Jacobi é particularmente importante por ser a única formulação matemática da mecânica em que o movimento de uma partícula pode ser representada como uma onda. Neste sentido, a equação preencheu um antigo objetivo da física teórica (iniciada no século XVIII por Johann Bernoulli) que era o de encontrar uma analogia entre a propagação da luz e o movimento de uma partícula. A equação de onda seguida por sistemas mecânicos é similar a, mas não idêntico a, equação de Schrödinger, por esta razão, a equação de Hamilton–Jacobi é considerada a maior aproximação da mecânica clássica com a mecânica quântica.[1][2]

Definição

A equação de Hamilton–Jacobi é uma equação diferencial parcial, não linear de primeira ordem para a função  chamada de função principal de Hamilton.

 /
G ψ = E ψ =  E [G+].... .. 

Esta equação pode ser obtida a partir da mecânica hamiltoniana tratando-se  como a função geradora para uma transformação canônica da mecânica Hamiltoniana . O momento conjugado corresponde à primeira derivada de  com respeito as coordenadas generalizadas

 
 / G ψ = E ψ =  E [G+].... .. 

que pode ser obtido como se segue.

A mudança na ação de um caminho para um caminho vizinho é dado por

 
/ G ψ = E ψ =  E [G+].... 

Desde que os caminhos do movimento atual satisfaçam a equação de Euler–Lagrange, a integral em  será zero. No primeiro termo nós colocaremos , e denotaremos o valor de  por simplesmente . Trocando  por , nós teremos

/ G ψ = E ψ =  E [G+].... 

A partir desta relação se segue que a derivada parcial da ação com respeito às coordenadas são iguais ao momento correspondente. Similarmente, as coordenadas podem ser obtidas como derivadas com respeito do momento transformado, ao se inverter estas equações, pode-se determinar a evolução do sistema mecânico, isto é, determinar as coordeadas como funções do tempo. As posições iniciais e as velocidades são as constantes da integral para a solução de , que corresponde às quantidades conservadas da evolução tal como a energia total, o momento angular, ou o vetor de Laplace–Runge–Lenz.

Comparação com outras formulações da mecânica

A equação de Hamilton–Jacobi é uma equação diferencial parcial de primeira ordem para a função  das N coordenadas generalizadas  e de tempo . O momento generalizado não aparece, exceto como derivadas de .

Para comparação, na equivalente equação de Euler–Lagrange da mecânica de Lagrange, o momento conjugado também não aparece; entretanto, estas equações são um sistema de , geralmente equações de segunda ordem da evolução temporal das coordenadas generalizadas. Como uma nova comparação, a equação de Hamilton é similar a um sistema de  equações de primeiro grau para evolução temporal das coordenadas e seus momentos conjugados .

Já que a equação de Hamilton–Jacobi é uma expressão equivalente a um problema de minimização integral como o princípio de Hamilton, ela pode ser útil em outros problemas de cálculo de variações e outros campos da matemática e da física, como sistema dinâmicogeometria simplética e caos quântico. Por exemplo a equação de Hamilton–Jacobi pode ser utilizada para de terminar as geodésicas de uma variedade de Riemann.

Notação

Para abreviar, utilizaremos negrito como em  para representar a lista de  coordenadas generalizadas.

que não precisa transformar como um vetor em rotação. O produto escalar é definido aqui como a soma dos produtos dos componentes respectivos, isto é,

 
/ G ψ = E ψ =  E [G+].... 




Na mecânica quântica, a Representação de Dirac ou Representação de Interação é uma intermediação entre a Representação de Schrödinger e a Representação de Heisenberg. Considerando que nas outras duas representações ou o vetor do estado quântico ou o operador possuem dependência com o tempo, na Representação de Dirac ambas possuem parte da dependência do tempo dos observáveis.

Equações que incluem operadores agindo em tempos distintos, que são comportadas na Representação de Dirac, não necessariamente serão comportados nas representações de Schrödinger e Heisenberg. Isto é porque transformações unitárias do tempo se relaciona com operadores de uma representação com o operador análogo da outra representação.

Definição

Operadores e vetores dos estados quânticos na Representação de Dirac são relacionados pela mudança de base para aqueles operadores e vetores na Representação de Schrödinger.[1]

Para alternar na Representação de Dirac, nós dividimos o hamiltoniano da Representação de Schrödinger em duas partes, . / 

Se o hamiltoniano for dependente do tempo (por exemplo, se o sistema quântico interagir com um campo elétrico aplicado externo que varia com o tempo), normalmente nos será vantajoso incluir explicitamente os termos dependentes do tempo com , deixando o  independente do tempo. Nós iremos assumir que este será o caso. (se existir um contexto em que isto faça sentido ter um  dependente do tempo, então deve-se trocar  pelo operador de evolução).

Vetor do estado quântico

O vetor do estado quântico na Representação de Dirac é definido como[2]

 
/ G ψ = E ψ =  E [G+].... 

Onde  é o mesmo vetor da Representação de Schrödinger.

Operadores

Um operador na Representação de Dirac é definido como

 
/ G ψ = E ψ =  E [G+].... 

Perceba que  não será dependente de t e pode ser reescrito como .

Operador hamiltoniano

Para o operador  a Representação de Dirac e Schrödinger são idênticas

 
/ G ψ = E ψ =  E [G+].... 

Isto pode ser comprovador usando o facto que os operadores comutáveis com funções diferenciáveis. Este operador em particular também pode ser escrito da forma  sem ambiguidade.

Para a perturbação hamiltoniana , teremos

 
/ G ψ = E ψ =  E [G+].... 

onde a perturbação hamiltoniana da Representação de Dirac se torna um hamiltoniano dependente do tempo (a não ser que ). / G ψ = E ψ =  E [G+].... 

É possível de se obter a Representação de Dirac para um hamiltoniano dependente do tempo , mas os exponencias precisam ser substituídos pelo propagador unitário devido para  ou mais explícito com uma integral exponencial ordenada pelo tempo.

Matriz densidade

matriz densidade pode se demonstrada transformando a Representação de Dirac da mesma forma como qualquer outro operador. Em particular, deixe  e  ser a matriz de densidade na Representação de Dirac e na Representação de Schrödinger, respectivamente. Se existe possibilidade de  ser no estado físico , então

/ G ψ = E ψ =  E [G+].... 

Estados da evolução temporal

Transformando a Equação de Schrödinger numa Representação de Dirac teremos:

 
/ G ψ = E ψ =  E [G+].... 

Esta equação se refere à equação Schwinger-Tomonaga.

Operadores da evolução temporal

Se o operador  é independente do tempo então a evolução temporal correspondente para  é dada por

 
/ G ψ = E ψ =  E [G+].... 

Na Representação de Dirac os operadores evoluem no tempo como os operadores da Representação de Heisenberg com o hamiltoniano .

Evolução temporal da matriz densidade

Transformando a equação de Schwinger-Tomonaga na linguagem da matriz densidade teremos

 

/ G ψ = E ψ =  E [G+].... 

Qualquer escolha das partes nos dará uma Representação de Dirac válida, mas para nos ser útil na simplificação do problema, as partes serão escolhidas de forma que  será facilmente resolvido e  conterá as partes mais difíceis de analisar deste sistema.



Comentários

Postagens mais visitadas deste blog